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Direct numerical simulation is used to study a round turbulent jet in a laminar
crossflow. The ratio of bulk jet velocity to free-stream crossflow velocity is 5.7 and
the Reynolds number based on the bulk jet velocity and the jet exit diameter is 5000.
The mean velocity and turbulent intensities from the simulations are compared to
data from the experiments by Su & Mungal (2004) and good agreement is observed.
Additional quantities, not available from experiments, are presented. Turbulent kinetic
energy budgets are computed for this flow. Examination of the budgets shows that the
near field is far from a state of turbulent equilibrium – especially along the jet edges.
Also – in the near field – peak kinetic energy production is observed close to the
leading edge, while peak dissipation is observed toward the trailing edge of the jet. The
results are used to comment upon the difficulty involved in predicting this flow using
RANS computations. There exist regions in this flow where the pressure transport
term, neglected by some models and poorly modelled by others, is significant. And
past the jet exit, the flow is not close to established canonical flows on which most
models appear to be based.

1. Introduction
A jet in crossflow is defined as the flow field where a jet of fluid enters and

interacts with a crossflowing fluid. Important examples of jets in crossflow are fuel
injectors, smokestacks, film cooling on turbine blades and dilution holes in gas turbine
combustors. Margason (1993) provides a comprehensive review of past work on this
problem. The emphasis has been on the study of the velocity and vorticity fields
(Kamotani & Greber 1972; Fearn & Weston 1974; Andreopoulos & Rodi 1984;
Fric & Roshko 1994; Krothapalli; Lourenco & Buchlin 1990; Kelso & Smits 1995),
the study of the scalar mixing (Smith & Mungal 1998; Su & Mungal 2004) and
attempts at modelling the flow field and jet trajectory (Broadwell & Breidenthal 1984;
Karagozian 1986; Hasselbrink & Mungal 2001; Muppidi & Mahesh 2005).

Some of the recent work on jets in crossflow involves numerical simulations.
Calculations based on the Reynolds-averaged equations appear not to adequately
predict the turbulent statistics (e.g Chochua et al. 2000). Two-equation models have
also been shown to under-predict the lateral jet width, and over-predict the jet’s
penetration into the crossflow (Acharya, Tyagi & Hoda 2001). In comparison, large
eddy simulations (LES) have provided better agreement with experimental data.
Yuan and coworkers (Yuan & Street 1998; Yuan, Street & Ferziger 1999) performed
LES of a round jet in crossflow under comparable conditions to experiments by
Sherif & Pletcher (1989) and compared statistics of mean velocity, turbulent intensities
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Figure 1. Schematic of the problem.

and passive scalar concentration. The LES was shown to reproduce the large-scale
coherent structures observed experimentally, and their results were used to suggest
that the upright vortices seen in the wake of the jet are related to the horseshoe
vortices upstream of the jet. Mechanisms for jet bending and entrainment were
also examined. Schluter & Schonfeld (2000) compared the results of their LES with
experimental velocity profiles of Andreopoulos & Rodi (1984) and scalar fields of
Smith & Mungal (1998), and obtained reasonable agreement.

The objective of this paper is to perform an experimentally validated DNS of a
round turbulent jet in crossflow, to use the simulation to present statistics of quantities
not available from the experiment, to examine the relevant time scales in this flow, and
to discuss why typical RANS computations do not predict this flow field adequately.
This paper is organized as follows. Section 2 describes the problem and the relevant
parameters. Section 3 provides the details of the simulations. A few details of the flow
field are presented in § 4.1. A comparison with the experimental data of Su & Mungal
(2004) is presented in § 4.2 and the velocity field is discussed in § 4.3. Turbulent kinetic
energy budgets for this flow are presented in § 5. The paper ends with a short summary
in § 6.

2. Problem
Figure 1 shows a schematic of the problem, where a jet issues perpendicularly from

a round pipe (of diameter d) into the crossflow. The crossflow is in the x-direction
and the jet is in the y-direction. The origin is located at the centre of the jet exit as
shown. Here u∞ is the crossflow free stream velocity. The velocity ratio is defined as
r = uj/u∞, where uj is the mean jet velocity obtained by averaging uj over the pipe
cross-section.

Simulations are performed at the same conditions as the experiments by Su &
Mungal (2004). The velocity ratio (r) is 5.7 and the Reynolds number of the flow,
based on the bulk jet velocity and the jet–exit diameter, is 5000. In the experiment, the
jet exits out of a round pipe (approximately 70 diameters long) into the crossflow. In
the absence of any crossflow, fully developed pipe flow conditions are expected at the
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jet exit (Su & Mungal, § 2). The experiment considered two cases : one where the jet
exit was flush with the wall and another where the pipe protruded into the crossflow.
The present simulations are confined to the case of the jet exit flush with the wall, as
shown in figure 1. The crossflow is laminar and the 80 % boundary layer thickness is
δ80% = 1.32 d at the location of the centre of the jet exit, and in the absence of the jet.

3. Simulation details
3.1. Algorithm

The numerical scheme solves the incompressible Navier–Stokes equations,

∂ui

∂t
+

∂uiuj

∂xj

= − ∂p

∂xi

+ ν
∂2ui

∂xjxj

,
∂ui

∂xi

= 0, (3.1)

on unstructured grids, where ui, p and ν denote the velocities, pressure and kinematic
viscosity respectively. The density of the fluid is constant and is absorbed into the
pressure. The numerical scheme is described by Mahesh, Constantinescu & Moin
(2004) in detail. The scheme is a predictor–corrector formulation which is robust
at high Reynolds numbers without numerical dissipation. The Cartesian velocities
and the pressure are stored at the centroids of the control volumes and the face
normal velocities are stored independently at the centroids of the faces. The predicted
velocities at the control volume centroids are obtained using the viscous and the
non-linear terms of (3.1) and are used to predict the face normal velocities on the
faces. The predicted face normal velocity is projected so that continuity is discretely
satisfied. The resulting Poisson equation for pressure is solved iteratively using a
multigrid approach. The Crank–Nicolson scheme is used to advance implicitly in
time. The algorithm has been validated for a variety of problems (see Mahesh et al.
2004) over a range of Reynolds numbers.

3.2. Computational domain and boundary conditions

The computational domain extends 36d × 64d × 64d in the axial, wall-normal and
spanwise directions (x, y and z) respectively. Preliminary computations were per-
formed to establish that a domain of this size does not constrain the jet, and that
the flow does not feel the effects of confinement by the boundary. A pipe of length
2d is included in the computational domain in order to allow the fully developed
turbulent pipe flow field (at the inlet) to adjust to the interaction between the jet and
the crossflow. The crossflow inflow plane is located 4d upstream of the jet exit.

The crossflow is modelled as a laminar flow past a flat plate. In the absence of the
jet, the crossflow has a boundary layer thickness of δ80% = 1.32d at the centre of the
jet exit. At the crossflow inflow plane, the velocity field is specified as the solution to
the Blasius boundary layer equation (Schlichting 1968). The inflow boundary layer
thickness is specified such that the boundary layer grows to the required thickness
at the jet exit in the absence of the jet. The boundary condition is validated by
performing a simulation of only the crossflow, on a domain without the pipe. The
mesh used for this validation study was considerably coarser (edge lengths 5–10 times
in the streamwise and spanwise directions) than that used in the turbulent simulation.
Figure 2(a) shows the results of this validation. Streamwise velocity u at all the
control volumes of the domain is plotted against the similarity variable η (where
η = y

√
u∞/νx). The symbols show the results from the simulation, and are compared

to the analytical Blasius solution (shown as a solid line). Note that good agreement
is obtained.
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Figure 2. (a) Validation of the crossflow. Comparison with analytical Blasius solution. �,
simulations; , Analytical solution. (b), (c), (d) Validation of the turbulent pipe flow.
Comparison to data from Eggels et al. (1994). , simulation; �, Eggels et al.

The jet in the experiment is turbulent and fully developed by the time the fluid exits
the jet exit. A separate computation is therefore performed to simulate fully developed
turbulent flow in a pipe. The Reynolds number (based on the pipe diameter and the
mean axial velocity) is 5000. The computational mesh contained 256 × 96 × 128 points
in the axial, radial and the azimuthal directions respectively. In wall units, the grid
spacing is �x+ =6.762, �r+ = 1.802, and in the azimuthal direction, the minimum
and maximum spacings are �θ+ = 0.0042 and 8.447 respectively. Figures 2(b), 2(c)
and 2(d) compare the radial profiles of velocity and turbulent intensities to the results
of Eggels et al. (1994). Mean axial velocity v is normalized with the bulk velocity
vb (figure 2b), and the r.m.s. velocities and Reynolds shear stress (figures 2(c) and
2(d)) are normalized with the friction velocity (uτ =

√
τwall/ρ, where τwall is the wall

shear stress). The profiles shown in solid lines are from the present simulation and
the symbols denote the results of Eggels et al. (1994). Note that good agreement is
obtained.

Once the pipe flow simulation becomes statistically stationary, the instantaneous
velocity field at a cross-sectional plane is stored over a length of time (over,
approximately, 200 d/u∞ units). The stored velocity field is interpolated onto the
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inflow plane of the jet in the turbulent jet simulation. On the exit plane (x/d = 32),
a zero-gradient boundary condition is used for the velocities. On the spanwise
boundaries (z/d = ± 32), the velocity field corresponding to the laminar crossflow is
specified. Free-stream velocity boundary conditions are specified on the top boundary
(y/d = 64).

3.3. Computational mesh

The computational mesh is unstructured and consists of approximately 11 million
hexahedral elements. The smallest elements are found at the walls of the pipe and
the crossflow. The largest elements are found away from the jet exit and the wall.
The mesh is constructed as follows. The inflow plane for the pipe (y/d = −2) is first
meshed; 128 elements are used in the azimuthal direction and 72 elements in the
radial direction (up to a depth of about 0.4d inwards from the wall). This part of the
face mesh is structured. The rest of the plane is meshed using unstructured elements
of size (edge length) 0.005d . This face mesh is now swept in the y-direction up until
the jet–exit (y/d = 0) with an edge length (�y) of 0.02d . Note that the mesh in this
part of the domain is based on the mesh used to simulate the turbulent pipe flow
specified at the inlet.

The wall of the crossflow is then meshed. The size of the mesh elements in the
region around the jet exit is allowed to grow (with 128 azimuthal elements) linearly
outward at a ratio of 1.05. This is done until the elements grow to an edge length of
0.1d . The region of interest, roughly spanning 5d either side of the symmetry plane
and up to 20d downstream of the jet exit, is meshed using unstructured elements of
size 0.1–0.15d . The rest of the plane is then meshed with elements that are allowed to
be large away from the region of interest. Mesh elements of around 1.0d are found at
distances about 24d away from the symmetry plane and around 24d downstream of
the jet exit. The mesh size variation is not allowed to be unreasonably high anywhere
in or near the region of interest. The mesh on the plane y/d =0 is now swept in the
y-direction. A boundary layer at the crossflow wall allows fine elements near the wall
(�y = 0.01d) and the mesh size increases linearly away from it at a rate of 1.05 till the
mesh size is 0.1d . �y is kept constant until a height of y/d = 24. Past this plane (note
that jet exits the domain before crossing this plane), �y is allowed to grow linearly
at a rate of 1.1.

The computational domain, mesh and the boundary conditions were chosen after
a series of simulations. For example, simulations were performed on domain sizes of
36d × 32d × 12d and 36d × 64d × 12d before the present simulation where the domain
is 36d × 64d × 64d . The computational mesh used in the preliminary simulations
initially contained 2.4 million elements, which was refined to 6 million, 8 million,
and finally the present mesh which contains about 11 million elements. Preliminary
simulations of a laminar jet in crossflow were performed on a domain that included
a 10d length of pipe. An examination of the velocity profile in the pipe showed that
at r = 5.7, a pipe of length 2d is sufficient to let the jet evolve naturally before exiting
into the crossflow.

4. Flow field
The simulation is performed at a time step of 0.0025 non-dimensional time units

(d/u∞). The computation is begun with a ‘no-flow’ initial condition. The solution is
allowed to evolve until about 80 time units, by which time the transients exit the
computational domain. Statistics, presented in this paper, are then computed over
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Figure 3. Isometric view of the flow field. Contours of velocity 〈v〉 on the symmetry plane
indicate the extent of the jet. Centre streamline is shown in white. Jet cross-section, at s = d ,
4d , 10d and 15d , is shown using contours of 〈us〉. Streamlines at these locations indicate the
stages of CVP formation. Streamlines originating in the crossflow fluid show entrainment of
the crossflow fluid by the jet.

another 120 time units. Statistical convergence is ensured by comparing the statistics
computed using increasing number of samples (and hence increasing flow time over
which statistics are computed). The profiles presented are computed over 120 units
of time, and using 12 thousand samples.

4.1. Evolution of the jet

As a jet issues into the crossflow, it deflects in the direction of the crossflow.
Additionally, a pair of counter-rotating vortices is generated. The counter-rotating
vortex pair (CVP) has been considered to be a dominant feature of this flow and
has been observed to persist far downstream (Keffer & Baines 1963; Pratte & Baines
1967; Kelso, Lim & Perry 1996). It is convenient to study the evolution of the
jet in a coordinate system that is aligned with the jet. At any point along the jet
trajectory (defined by the centre streamline), a new coordinate system s–n is obtained
by rotating the x–y axes about the z-axis by an angle θ . On the s–n plane, s is the
coordinate along the jet centreline, and n is the coordinate normal to the centreline.
The z-coordinate is the same in both the coordinate systems. By a simple coordinate
transformation, the velocity field can be expressed in terms of us , un and w, along the
s-, n- and z-axes respectively.

Figure 3 presents an isometric view of the flow field. Time-averaged contours of
velocity v on the symmetry plane give an indication of the extent of the jet. The
centre streamline, shown in white, passes through the centre of the jet exit. Note
that the jet is wider toward the leeward side than toward the windward side of the
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centre streamline. This disparity has been noted by Su & Mungal (2004, figure 8).
Figure 4 shows three-dimensional streamlines that originate in the pipe, indicating
the motion of the jet fluid. The centre streamline (shown as a thick line) originates
at the centre of the jet exit. All the other streamlines originate along the edge of the
jet (near the walls of the pipe). The trajectories of streamlines that do not originate
on the symmetry plane are shallower than the trajectory of the centre streamline.
This results in the jet being wider on the leeward side of the centre streamline. Also
note that the crossflow fluid has a higher momentum at the upstream side of the jet
(negative x side of the jet centreline) as compared to the downstream side of the jet.
This difference in momentum could also aid in accentuating the asymmetry in the jet
width. This feature is also observed instantaneously.

At distances of s = d , 4d , 10d and 15d , the jet cross-section is presented (in figure 3)
using contours of time-averaged trajectory-parallel velocity 〈us〉. With increasing s,
an increase in size of the jet cross-section is observed, along with a change in shape.
Close to the jet exit, the jet cross-section is circular, and fluid with the highest velocity
is seen towards the centre. The trailing edge flattens as the jet cross-section deforms
to a kidney shape. Away from the jet exit, the high velocity contours are seen toward
the edges of the jet, while the fluid towards the centre appears to have a relatively
lower velocity. At these cross-sections, streamlines show the stages of formation of
the CVP. At s = d , streamlines show a small region of vorticity toward the trailing
edge of the jet. Moving farther, the CVP increases in size. At s = 15 d , figure 3 shows
profiles of 〈us〉 along the n-axis (A–B) and along the z-axis (C–D). Note that the
centre of the CVP corresponds to peak 〈us〉 along C–D. Along the line A–B (from
the windward side of the jet toward the centre and beyond), 〈us〉 begins to increase
near the jet edge, reaches a peak near the jet centre, decreases, and exhibits a second
peak below the jet centreline.

The centre of the CVP (where the vorticity is maximum) lies below (positive
x, negative y side) the centre streamline, as observed in figure 3. This supports the
observation (Fearn & Weston 1974) that a jet trajectory based on the centre streamline
penetrates deeper into the crossflow than a trajectory based on vorticity. Owing to
the CVP and to lower fluid velocities near the centre of the jet cross-section, it may
be expected that the scalar gets ‘trapped’ in this region of low velocity, and that
more of the fluid containing the scalar would be present below the centre streamline
than above. As a consequence, a trajectory based on the scalar concentration would
penetrate less into the crossflow than a trajectory based on the centre streamline, as
observed by Kamotani & Greber (1972), Yuan & Street (1998) and Su & Mungal
(2004). As s increases, so does the displacement between the centre streamline and the
CVP, suggesting that the difference between trajectories increases along the length of
the jet. Figure 3 also shows a few representative streamlines. These originate from the
crossflow inflow plane, and describe the motion of the crossflow fluid. Crossflow fluid
travels around the jet, and some of it is entrained by the jet on the downstream side.
These streamlines hint that the jet entrains more crossflow fluid on the downstream
side than on the upstream side. Finally, the fact that the streamlines do not just
follow the centre streamline, that they exhibit a significant curvature (figures 3 and
4), indicates the effect of the CVP and the strength of its vorticity.

4.2. Comparison with experiments

Su & Mungal (2004) provide detailed experimental profiles of velocity and turbulent
intensities at a few horizontal stations, as a function of the non-dimensionalized
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streamwise distance (x/rd), along with the mean jet trajectory. This subsection
compares results from the simulation to that of the experiment.

Su and Mungal report that the bulk jet velocity (uj ) in their experiment is 16.9 m s−1

and that the free-stream crossflow velocity (u∞) is 2.95 m s−1, which gives a velocity
ratio (r = uj/u∞) of 5.7. The velocity ratio in the simulation is also 5.7. The Reynolds
number based on the bulk jet velocity and the jet exit diameter is 5000, and matches
that in the experiment. Note that the simulation assumes both the jet fluid and the
crossflow fluid to have the same density. However, in the experiment, the jet fluid
(nitrogen) is seeded with acetone vapour which gives the jet fluid a 10 % higher
density (ρj/ρ∞ = 1.1, Su & Mungal 2004). If the velocity ratio (reff) were to be defined
based on the momentum

reff
2 =

ρjuj
2

ρ∞u∞2
=

ρj

ρ∞
r2, (4.1)

the flow parameters described in Su & Mungal (2004) yield a reff =6.008. It has been
previously noted (Muppidi & Mahesh 2005) that the flow field of a jet in crossflow
is very sensitive to the jet inflow at the jet exit. As a jet of fluid with a density 10%
higher than that of the crossflow exits the jet exit, it has a momentum that is 10%
higher than a jet with the same fluid density as that of the crossflow. This higher
momentum could lead to higher peak velocities (v), sharper intensity gradients and a
trajectory that penetrates deeper into the crossflow.

Figure 5(a) compares the experimentally observed jet trajectory to the trajectory
extracted from the simulation. The axes are normalized by r . Note that the jet in the
experiment penetrates deeper into the crossflow. It should be mentioned here that
the jet trajectory from the experiment is extracted using the local scalar maxima,
and the trajectory from the present computation is defined based on the streamline
passing through the jet exit on the symmetry plane. It has been shown (Su & Mungal
2004, figure 19) that the trajectory based on the centre streamline penetrates deeper
into the crossflow than the trajectory based on the local scalar maxima. Figure 5(a)
shows, however, that owing to the difference in the densities, the trajectory based on
the centre streamline is lower than the scalar maxima trajectory from the experiment.

A reasonable approach to compare the experimental and computed results is to
use reff to scale the results instead of r . Such a scaling would account for the density
ratio of the jet and the crossflow fluids. Jet trajectories scaled using reff are shown in
figure 5(b); reff = 5.7 for the simulation and reff = 6.008 for the experiment, a difference
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Figure 5. Comparison of jet trajectory from the simulation ( ) with that from the
experiment (�); (a) scaled using r , and (b) scaled using reff.

of approximately 5%. It is observed that rescaling the trajectories brings them closer
to each other. At a location 15 d downstream of the jet exit, the difference between
the trajectories scaled with rd is about 6.5 % while scaling the trajectories using reffd

reduces the difference to 2.8%.
Figure 6 compares profiles of v and v′v′ between the simulation and the experiment,

while profiles of u′u′ and u′v′ are compared in figure 7. The solid lines in these plots are
results from the present simulation while the symbols are results from the experiment.
In order to account for the difference in jet fluid density, the velocity and turbulent
intensities are scaled using reff.

Close to the jet exit, the jet shows characteristics similar to that of turbulent flow
in a pipe. Both v and v′v′ appear to be symmetric about x = 0. One difference from
a turbulent pipe flow profile is a small negative velocity v upstream of the jet (peak
negative velocity is observed at x ∼ −0.1rd). The crossflow fluid sees the jet as an
obstacle, resulting in a high-pressure region upstream of the jet (profiles of pressure
are shown in figure 11c). This pressure gradient forces crossflow fluid towards the
jet exit (the crossflow fluid even enters the pipe at sufficiently small velocity ratios),
giving rise to the negative v as observed. Similar behaviour is observed when the jet
is laminar (Muppidi & Mahesh 2005). Moving away from the jet exit, the profiles
lose the symmetry. At the farthest station (y/rd = 1.0), the observed profile for v

appears to be composed of two distinct jets, one with a higher velocity (centred at
x = 0.1rd) followed by another with a lower velocity (centred at x =0.38rd). Section
4.1 mentioned the jet fluid on the sides of the jet that is deposited on the symmetry
plane downstream of the jet. This jet fluid possesses a vertical velocity and results in
a ‘two-jet’ profile as observed.

In comparison to v and v′v′, the streamwise velocity at the leading and the trailing
edges of the jet is different, and hence the profile of u′u′ is not symmetric even
at the 0.1rd , the station closest to the jet exit. Moving away from the jet exit, the
turbulent intensity profiles u′u′ and v′v′ show a single peak. As the jet begins to
bend in the direction of the crossflow, moving away from the wall, the peak velocity
and intensities are observed downstream of the jet exit. It must be mentioned here
that the symmetry (about x = 0) seen in the profiles of v and v′v′ (at 0.1rd) might
not always be observed, particularly at lower r . It is known that at lower velocity
ratios, the pressure gradient imposed on the jet by the crossflow might succeed in
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Figure 6. Comparison of mean vertical velocity (v) and turbulent intensity (v′v′) profiles with
the experimental results. , simulation; �, experiment. Profiles belong to the symmetry
plane, and at stations y =0.1rd , 0.5rd and 1.0rd .

forcing crossflow fluid into the pipe. Consequently, at lower velocity ratios (Muppidi
& Mahesh 2005; the velocity ratio was 1.52), v is not symmetric at the jet exit. It
must be expected that at such a r , even the turbulent intensity v′v′ would not be
symmetric. However, it appears from figure 6 that at this velocity ratio of 5.7, and at
y/rd = 0.1, the profiles of v and v′v′ are fairly symmetric.

Figure 7(b) shows a comparison of u′v′. At the first two stations, a very good
agreement is observed, while the profiles at the farthest station show a difference.
While the location of the peaks appear to coincide, magnitude of peak u′v′ from the
experiment is higher than that from the simulation.
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experimental results. , simulation; �, experiment. Profiles belong to the symmetry plane,
and at stations y = 0.1rd , 0.5rd and 1.0rd .

Overall, for all the quantities compared and at all the locations, the agreement
presented is quite reasonable, particularly, when seen in the context of the sharp
gradients that the profiles possess (e.g. v′v′ and u′v′ at y/rd = 0.1).

4.3. Velocity field

Figure 8(a) shows the instantaneous contours of the magnitude of vorticity√
ω2

x + ω2
y + ω2

z , non-dimensionalized using u∞ and d , on the symmetry plane. The
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plane. (b) Instantaneous contours of streamwise velocity u. End view at the jet exit(x/d = 0).

highest vorticity magnitude is observed near the walls of the pipe and along the jet.
Note the small scales of motion inside the pipe and close to the jet exit. Small scale
features are observed even away from the jet exit along the jet centreline, though the
vorticity magnitude is lower. Upstream of the jet, the crossflow fluid shows a vorticity
that is steady, smaller in magnitude, and characteristic of a laminar boundary layer.
Downstream of the jet (and x/d < 6), there appears to be a quiescent region with
low vorticity (shown in white). Further downstream, the flow contains larger-scale
features which move slowly in the direction of the crossflow. Instantaneous contours
of the streamwise velocity (u) on the end-on plane (x/d =0) are shown in figure 8(b).
The direction of the crossflow fluid, in this figure, is into the plane of the paper.
Small-scale flow features are clearly seen inside the pipe and near the jet exit as the
jet fluid exits into the crossflow. The three-dimensionality of the flow field is apparent.
Outside this interaction region (past about 5 diameters away from the jet exit), the
crossflow fluid appears relatively quiescent. The contours show that the crossflow
boundary layer thickness decreases close to the jet exit. This is due to the acceleration
of the crossflow fluid as it travels around the jet.

The inflow condition at the pipe entrance is a time-dependent velocity field from
the computation of a fully developed turbulent flow in a pipe. A pipe of length 2d is
included in the domain to allow the jet to develop naturally prior to exiting into the
crossflow. Figure 9(a) shows mean velocity (v) profiles on the symmetry plane across
the pipe diameter at different stations parallel to the x-axis; y/d = −2, −1, 0, 1, 2, and
3. Note that the first three profiles shown (y/d = −2, −1 and 0) do not differ much
from each other. This would suggest that the length of pipe used in the computations
is sufficient to model the problem. The jet decelerates as it interacts with the crossflow,
and the momentum of the crossflow forces the jet to move to the right. As a result,
the profiles show that, moving away from the jet exit, the peak velocity decreases
and the peak shifts to the right. Profiles of turbulent intensity (v′v′) are presented
in figure 9(b). Once the fluid exits the jet and interacts with the crossflow, there is
a significant increase in the turbulent intensity as is clearly seen. As with profiles of
v, locations of peak v′v′ shift in the direction of the crossflow. Along the length of
the pipe (y/d = −2, −1 and 0), profile of v′v′ shows a change more noticeable than
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that observed in the profile of v. Such a change in v′v′ shows that the fluid in the
pipe is adjusting to the interaction past the jet exit. This behaviour makes the case
for simulating the flow in the pipe upstream of the jet exit. This aspect has been
previously mentioned in Yuan et al. (1999) and Muppidi & Mahesh (2005).

Figure 10(a) shows the variation of the horizontal and vertical components of mean
velocity (〈u〉, 〈v〉) along the centre streamline. The coordinate s = 0 corresponds to
the jet exit. In the near field, the direction of the jet fluid is essentially vertical, and is
reflected in the fact that 〈v〉 is greater than 〈u〉 by a couple of orders of magnitude
at low s. As the jet evolves and bends, the jet fluid accelerates in the direction of the
crossflow fluid, indicated by the increase in 〈u〉. In the far field, one would expect the
jet fluid to travel in the direction of the crossflow, and hence the asymptotic values
of the curves would be u∞ for 〈u〉 and zero for 〈v〉.
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Variation of the trajectory-parallel component of velocity 〈us〉, along the jet length,
is plotted in figure 10(b). Note that by definition,

〈us〉 =
√

〈u〉2 + 〈v〉2, (4.2)

since the trajectory-normal component (〈un〉) is zero. The velocity decay is plotted on
a log–log graph along with slopes of −1 and −1.3. For a regular turbulent jet, the
velocity decay occurs at a rate of −1, i.e. us ∝ 1/s. From figure 10(b), it appears that
the centreline velocity decays at a rate faster than 1/s and that the decay rate is closer
to −1.3. This faster decay rate only confirms that a transverse jet mixes better/faster
with the crossflow fluid than does a regular jet with the ambient fluid. Past about 10d ,
the decay rate falls and it appears that us approaches u∞. Smith & Mungal (1998)
use a ‘branch point’ to differentiate between the near field and the far field. From the
results of experiments at a range of r , the branch point is posited to be at s = 0.3r2d

(s =9.75d , for r = 5.7). Their results of scalar concentration decay show a −1.3 decay
in the near field and a −2/3 decay rate in the far field. In contrast to Smith &
Mungal’s results, Su & Mungal (2004) observe a scalar concentration decay rate of
1/s in the near field and higher decay rate past s ∼ 2.5rd (s ∼ 14.25d; s/r2d ∼ 0.44).
Su & Mungal also present the decay of magnitude of velocity with s. As mentioned
earlier, along the jet centre streamline, this quantity is equal to us . Their results show
a behaviour similar to the present results: the decay rate is visibly faster than 1/s

in the near field and the velocity asymptotically approaches the free-stream crossflow
velocity in the far field.

Figure 11 contains horizontal profiles of a few other quantities on the symmetry
plane. Mean vorticity 〈ωz〉 and spanwise velocity variance 〈w′w′〉 are plotted, along
with mean pressure 〈p〉 and 〈p′p′〉. As earlier, the horizontal profiles correspond to
vertical locations y/rd =0.1, 0.5 and 1.0. Profiles of mean vorticity show that both
the peak magnitude and the steepness of the curves decrease from y = 0.1rd to 0.5rd

to 1.0rd . Past the jet width (both upstream and downstream), the profiles indicate
little vorticity. At the crossflow boundary, the pressure is the free-stream pressure.
An increase in pressure is observed moving toward the jet and a peak p is seen
just upstream of the jet exit. The crossflow exerts a favourable pressure gradient on
the jet, as the profiles clearly show. This pressure gradient accelerates the jet fluid
in the direction of the crossflow and suggests that the jet fluid can be considered
as subject to an sudden acceleration (in the x-direction) once past the jet exit. The
observed pressure gradient can be imagined to be a consequence of obstruction to
the crossflow, and hence should scale with the crossflow velocity. Since the first of the
profiles is within the crossflow boundary layer (where the crossflow velocity is lower
than u∞), it follows that the peak pressure observed at this station is lower than that
observed further from the wall. The pressure minima correspond to the centre of the
jet, downstream of which there is a region of pressure recovery.

Profiles of intensities of pressure and spanwise velocity, in figures 11(b) and 11(d)
show steep gradients near the jet edges at the closest station. These profiles, along
with the profiles of u′u′, v′v′ and u′v′ shown earlier, indicate the high turbulent
activity in the near field. Note that p′p′ is asymmetric even at y/rd = 0.1, like u′u′.
At y/rd = 0.5, the difference in peak p′p′ between the leading and trailing edges
appears comparatively higher than that observed in u′u′, v′v′ or w′w′. Also, w′w′

shows a tertiary peak at y/rd =0.5, corresponding to x/rd ∼ 0.23. Recall, from § 4.2
and figure 8 that jet fluid (from the sides of the jet) is deposited downstream of the jet
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Figure 11. Horizontal profiles of (a) 〈ωz〉, (b) 〈w′w′〉, (c) 〈p〉 and (d) 〈p′p′〉 at locations
y/rd = 0.1, 0.5 and 1.0.

by the crossflow fluid. Examination of w′w′ contours on the symmetry plane indicates
that the observed tertiary peak results from this feature of the flow.

5. Turbulent kinetic energy and budgets
Contours of the turbulent kinetic energy k = 〈uiui/2〉 on the symmetry plane are

shown in figure 12(a). Here, and in the rest of the paper, ui indicates the fluctuating
velocity, k is non-dimensionalized with the square of the velocity ratio i.e. k/r2u2

∞.
The mean jet trajectory is also shown. Yuan et al. (1999) present a similar plot from
their simulation (r = 3.3, figure 23 in their paper) where the minimum and maximum
values of k/u2

∞r2 are 0.01 and 0.1 respectively. The maximum k/u2
∞r2 inside the pipe

is about 0.045, and is observed close to the wall. As the jet exits into the crossflow,
the interaction between the jet and the crossflow fluids causes the turbulent kinetic
energy to increase. Past the jet exit, the peak k is observed at the leading and trailing
edges of the jet. Peak k at the leading edge is slightly higher than that at the trailing
edge. Around y/d ∼ 2.5, the shear layers corresponding to peak k on the leading and
the trailing edges collapse. Downstream of this point, the jet exhibits a single peak,
roughly along the mean jet trajectory.
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Figure 12. (a) Turbulent kinetic energy k/r2 on the symmetry plane. Also shown is the
centre streamline to indicate mean jet trajectory. (b) Variation of k along the centre streamline.

Figure 12(b) shows the variation of turbulent kinetic energy along the centre
streamline. It is observed that, past the jet exit, the turbulent kinetic energy increases
up to s ∼ 5d (where k/u2

∞r2 ∼ 0.135) and begins to decrease thereafter. The variation
of k with axial distance in a round turbulent jet shows a similar qualitative behaviour:
k is highest near the edges of the jet, initially; along the axis, k increases with distance
from the jet exit, peaks, and then decreases. At a Reynolds number of 2400, results
from Babu & Mahesh (2004) show a peak k (non-dimensionalized with mean jet exit
velocity) of around 0.038 at a distance of 7.5 diameters downstream of the jet exit.

The budget equation for the turbulence kinetic energy k = 〈uiui/2〉 may be written
as

∂

∂t
k + Uj

∂

∂xj

k

︸ ︷︷ ︸
convection

= − 〈uiuj 〉∂Ui

∂xj︸ ︷︷ ︸
production

− ν

〈
∂ui

∂xj

∂ui

∂xj

〉
︸ ︷︷ ︸

dissipation

− 1

2

∂

∂xj

〈uiuiuj 〉
︸ ︷︷ ︸
turbulent transport

+ ν
∂2

∂xj∂xj

k

︸ ︷︷ ︸
viscous diffusion

− 1

ρ

∂

∂xi

〈uip〉︸ ︷︷ ︸
pressure transport

. (5.1)

The budget terms have dimensions of velocity2/time, and can be non-dimensionalized
using d/u3

∞. In the rest of the paper, Pii denotes the non-dimensional production term,
Cii the non-dimensional convection and εii denotes the non-dimensional dissipation.
Non-dimensional pressure transport, turbulent transport and viscous diffusion are
denoted by πii , Tii and Dii respectively. Figure 13 shows contours of Pii , Tii , πii

and εii on the symmetry plane. All the terms indicate little activity in the pipe (as
compared to downstream of the jet exit) confined to a thin region near the pipe wall.
The magnitude of all the terms, except Dii , increase past the jet exit. As in figure 12
showing k, the peak budget terms appear to correspond to the leading and trailing
edges of the jet. Once the shear layers (originally corresponding to the leading and
trailing edges of the jet) collapse, peak turbulent activity is observed toward the centre
of the jet.

The peak (absolute) values of the individual terms on the symmetry plane are 29.52
(Pii), 12.83 (Tii), 3.24 (Dii), 5.93 (πii), 13.22 (εii) and 8.94 (Cii). The peak values are
not observed at the same location. For example, maximum Dii occurs inside the pipe,
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maximum Pii and εii occur on the jet edges past the jet exit, and peak values of Tii

and πii are seen further away from the jet exit and roughly near the jet centre – after
the shear layers collapse.

In order to assess the relative magnitudes of the terms of the budget, consider
locations A, B and C. A lies on the leading edge of the jet (and corresponds to peak
Pii), while B and C lie on the centre streamline a few diameters past the jet exit. The
relative strengths of the budgets at A, B and C are presented in table 1. The relative
strength of the individual budget terms is obtained by normalizing as follows:

P ′
ii =

Pii(
P 2

ii + Tii
2 + Dii

2 + πii
2 + εii

2 + C2
ii

) 1
2

etc. (5.2)

At all the locations, viscous diffusion Dii plays a minor role. Turbulent transport (Tii)
and the mean convection (Cii) terms are smaller than the production term (Pii) on
the jet edge, but are the dominant budget terms at B. The pressure transport term
(πii) is the most dominant term at location C, but appears to be significantly smaller
at the other two locations. Table 1 portrays the difficulty in characterizing turbulence
kinetic energy in this flow field. Not only do the characteristics of k and the budgets
differ between the jet edge and the jet centre but they also vary along the jet length.
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A B C
(x, y) (– 0.47d , 0.85d) (0.11d , 3.22d) (0.57d , 5.36d)

P ′
ii 0.876 0.102 0.329

T ′
ii −0.346 0.693 −0.198

D′
ii −0.013 −3.1 × 10−4 0.009

π′
ii −0.152 0.119 0.719

ε ′
ii −0.298 −0.199 −0.519

C ′
ii 0.011 0.674 0.209

Table 1. Comparison of the individual terms of turbulence kinetic energy at three locations:
A on the leading edge of the jet, and B and C on the centre streamline.

5.1. Inside the pipe

Figure 14 shows the horizontal profiles of the kinetic energy budgets inside the pipe
(y/d = −0.5), at the jet exit (y/d = −0.0) and downstream of the jet exit (y/d = 0.5).
Examination of profiles at different locations along the length of the pipe showed
no differences between y/d = −2.0 and y/d = −0.5. Hence, profiles at y/d = −0.5
indicate the turbulence characteristics upstream of the jet exit, and the profiles exhibit
behaviour similar to that of a fully developed turbulent flow in a pipe. The profiles
are visibly symmetric about the centre of the pipe. Viscous diffusion balances the
dissipation very close to the wall and production peaks slightly away from the wall
(x ∼ 0.05d). All the terms show lower magnitudes toward the centre of the pipe.

The profiles at the jet exit (shown with symbols), however, show markedly different
behaviour. The lack of symmetry is apparent, particularly in the profiles of viscous
dissipation and mean convection. Both εii and Cii increase in magnitude across the
width of the pipe, and the peak magnitudes are observed closer to the trailing edge.
Figure 13 showed significant turbulent activity just past the jet exit. Clearly, this is
a result of the interaction between the jet and crossflow fluids. As fluid exits the jet
exit, the shear layer expands/enlarges radially and the edges of the jet exhibit an
increase in the values of k, Pii , Tii , πii and εii . This evolution of the profiles can be
observed in figure 14, by comparing profiles of the budgets at y/d = 0.5 with those
at the jet exit. Within the relatively short distance of 0.5d , the peak values (of all
terms except Dii) increase significantly, while viscous diffusion decreases noticeably.
Inside the pipe, πii is fairly small in magnitude across the pipe diameter. Past the
jet exit, the profile shows peaks of significant magnitude near the jet edges. Note the
profile of Tii . Edges of the jet are characterized by a negative peak with significant
positive peaks on either side. This profile is similar to that observed in a mixing layer
(Rogers & Moser 1994), rather than that seen in a turbulent jet (Panchapakesan &
Lumley 1993). The disparity between the production and dissipation at the jet exit is
indicative of the considerable departure from equilibrium.

5.2. Downstream of jet exit

Horizontal profiles of Pii and εii are shown in figure 15(a) and those of πii are
shown in figure 15(b). These profiles belong to the symmetry plane, and to stations
y/rd = 0.1, 0.5 and 1.0. The profiles at the first station y/rd = 0.1 are characterized
by very sharp gradients, corresponding to the leading and trailing edges of the
jet. Moving away from the wall, the gradients appear less sharp. Production and
dissipation are the dominant terms at all the locations. Viscous diffusion, as mentioned
earlier, is relatively negligible. Pressure transport (πii), while lower than Pii and εii , is
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non-negligible at all the locations in figure 15(b). While non-zero values of πii are
observed only at the jet edges at y = 0.1rd , the profiles show non-zero values across
the jet width at the other stations. These features are significant to RANS models
and will be revisited in section 5.4.

Figure 16 shows trajectory-normal profiles of Pii and εii with at s = 5d , 10d , 15d ,
and 20d; n= 0 indicates the position of the centre streamline. Note that positive n

corresponds to the windward side of the jet and a negative n refers to the leeward
side. Profiles reflect the increase in jet width along the jet length. Absolute maximum
values of the budget terms decrease along the jet. The peak production at s =20d is
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barely 0.5% of the peak production value at s = 5d . Recall that two-peaked profiles
in the near field give rise to single-peaked profiles in the far field. Figure 16(a)
indicates that this transition occurs sooner (at a lower s) for dissipation profiles than
for production profiles. An important contrast between near field and far field is in
regard to locations of peak Pii and εii in relation to each other. At s =5d , peak Pii

at the leading edge is higher than that at the trailing edge. As such, location of peak
dissipation is to the leeward side of the location of peak production. At s = 15d and
s = 20d , in contrast, the location of peak dissipation is observed toward the windward
side of peak Pii . In the near field, there exists a high angle of incidence between
the crossflow fluid and the jet fluid. The interaction between the jet and crossflow
fluids appears to cause peak production of k on the leading edge. In the far field, the
direction of the jet is almost the same as that of the crossflow. Recall that the CVP
is below the centre streamline and that the jet entrains comparatively more fluid on
the leeward side. It appears that due to these features, peak production of k occurs
toward the trailing edge of the jet.

5.3. Time scales and ratios

Mean flow and turbulent kinetic energy (k, and budgets) characteristics can be used
to evaluate the different time scales associated with the flow field. The terminology
used here is consistent with that of Pope (2000): τ0 = d/u∞ is the reference time scale;
τε and τP are the turbulence decay and turbulence production time scales respectively;
τν – the Kolmogorov time scale – indicates the time scale of the smallest turbulent
motions and τj , the flight time, is an estimate of the time taken by a fluid particle at
any location to travel from the jet exit to that location; τc is the local convective time
scale. These time scales are defined as follows:

τ0 = d/u∞, τj =
1

2

s

us

, τc =
d

us

, τν =

√
ν

εii

, τP =
k

Pii

and τε =
k

εii

. (5.3)

Table 2 provides the representative values of these time scales at a few locations
across the domain. The chosen locations are upstream of the jet exit (1 and 2, at the
centre of the pipe and at the pipe edge, respectively), just downstream of the jet exit
(3, 4 and 5) and locations further away from the jet exit. The objective of this table is
to present the different regimes present in this flow. For the sake of reference, these
values are compared to relevant data for turbulent jet (Re = 11 000; Pope 2000) and
turbulent channel (Reτ =180) flows. Also computed is P/ε, which is the ratio of local
production of turbulence to the local dissipation. A value of P/ε greater than 1.0
indicates transport of turbulence kinetic energy from that location elsewhere, while a
value less than 1.0 indicates a transport to that location from elsewhere. The edges
of the jet are characterized by P/ε values greater than 1.0, and P/ε is higher on the
leading edge than at the trailing edge along the jet length. It can be inferred that
turbulence kinetic energy produced at the jet edges is transported toward the centre
of the jet, where P/ε< 1.0. Peak P/ε (across the domain) is observed at the leading
edge of the jet, at s = rd . This point corresponds to the location of significant change
in direction of the jet fluid. The jet is fairly vertical upstream of this point and bends
considerably, into the crossflow, downstream of this point.

5.3.1. Locations of maximum Pii and εii

Figure 17(a) shows the locus of the local maximum production of turbulent kinetic
energy, compared to the local maxima of the viscous dissipation. For comparison,
the centre streamline is also plotted. While the differences are small, these trajectories
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τj τc τν τε τP P/ε

Upstream jet exit
1. Near-wall (x/d = −0.46) 0.268 0.025 0.285 0.149 1.916
2. Pipe centre 0.133 0.079 0.619 21.514 0.029

Downstream jet–exit
s/rd = 0.1
3. Leading edge 0.093 0.327 0.011 0.177 0.063 2.817
4. Jet centre 0.038 0.134 0.033 0.232 9.093 0.0255
5. Trailing edge 0.082 0.289 9.88 × 10−3 0.148 0.077 1.929

s/rd = 1.0
6. Leading edge 1.133 0.394 0.041 2.823 0.324 8.714
7. Jet centre 0.795 0.276 0.029 1.412 2.172 0.650
8. Trailing edge 1.041 0.362 0.026 1.023 0.543 1.883

Far field
9. s/d = 15.0 6.336 0.845 0.207 4.01 8.855 0.452

10. s/d = 20.0 9.350 0.935 0.440 10.196 21.117 0.483

Other flows
11. Regular jet (r/r1/2 = 0.7) 5.3 4.5 5.7 0.8
12. Channel (y+ = 11.8) 0.1006 0.0156 0.225 0.124 1.81

Table 2. Ratios and time scales in the flow, at a few locations. Compared with relevant
available turbulent jet and channel flow data. All the time scales are normalized with τ0.
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Figure 17. (a) Trajectory of local maximum Pii (�) compared to trajectory of local maximum
εii (�). Also shown is the centre streamline trajectory ( ). (b) Time scales in the flow,
as a function of distance s from the jet exit. , τP ; , τε; , τj ; , τc;
and , τν .

are different from each other. An indication of this behaviour can be seen from
the profiles at y = 0.5d in figure 14. Profiles for both production and dissipation are
characterized by two peaks corresponding to the leading edge and the trailing edge.
However, peak Pii is observed at the leading edge while the peak εii is observed on the
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trailing edge. A similar difference in the locations of peak production and dissipation
are also observed in figure 15(a).

The variation of different time scales along the jet length is plotted in figure 17(b).
A straightforward approach would be to compute the time scales (5.3) at all points
along a single curve (e.g. the centre streamline). Consider a point close to the jet exit,
on the centre streamline. Both Pii and εii are characterized by low values compared
to that at the jet edges, as seen from figure 14. Clearly, τP and τε computed at
this location would not be indicative of the turbulence time scales at this particular
distance from the jet exit. In addition, one would expect large errors due to small
denominators (either Pii or εii). Profiles in figure 17(b) are plotted, in order to
circumvent this issue, along lines of local maxima of the denominators. That is, τj

and τc are computed along the centre streamline (where us would be expected to be
maximum), τP is computed along the trajectory of local maximum production, and τν

and τε are computed along the trajectory of local maximum dissipation. Figure 17(b)
shows that all the time scales involved with the flow increase with distance from the
jet exit. Curves plotting τP and τε are fairly close to each other, indicating that rates
of production and dissipation of turbulence are similar. Both these time scales are
much lower than τν close to the jet exit. The increase of τP and τε with s, however, is
faster than that of τν , and the Kolmogorov time scale is the smallest of the timescales
past s ∼ 8d .

A few words regarding the computation of kinetic energy budgets follow. Consider
(5.1). The budget is said to be balanced if the storage term ∂k/∂t =Pii + Tii +
Dii + πii + εii − Cii is zero. The magnitude of the storage term, theoretically zero,
is a measure of the numerical fidelity and convergence of the solution. The storage
term is not necessarily small if the discrete operators used to compute the budgets
are not consistent with the operators used to solve the Navier–Stokes and pressure
equations. In order to achieve such a consistency, discrete Navier–Stokes and time-
averaged Navier–Stokes equations were used to obtain discrete equations for ui .
These were contracted with ui to obtain the discrete kinetic energy budget terms. The
operators/expressions were validated by computing budgets for a turbulent channel
(Reτ = 180) and comparing the results with that of Moser, Kim & Mansour (1999).
Good agreement was observed. Computation of budgets in a homogeneous flow is
comparatively easier on account of spatial averaging. For a jet in crossflow, in contrast,
the lack of any homogeneous direction demands that the balance be reduced only
through time averaging.

In the present simulation, the balance was computed at every mesh point along
with the budgets. The balance, normalized according to (5.2), was examined across
the domain. Inside the pipe, the maximum normalized balance was observed to be
about 0.6%. At the jet exit, the highest value was observed closer to the trailing edge,
at about 0.8%. Downstream of the jet exit, the highest values were seen to be about
1.02%, 2.0%, 1.7% and 1.9% at locations y/rd = 0.1, 0.5, 1.0 and 1.5 respectively. For
the sake of comparison, budgets from a turbulent channel flow simulation (Reτ = 180;
Moser et al. 1999) were similarly normalized, and the maximum value for the balance
was found to be 0.35% and is observed at y+ = 5.5. Note that this is after spatial and
temporal averaging on a mesh containing 128 points in the streamwise and spanwise
directions.

5.4. Modelling implications

The Reynolds-Averaged Navier–Stokes (RANS) equations have been widely used to
simulate transverse jets. On investigating the effectiveness of several models, Hoda &
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Acharya (2000) conclude that existing models provide overly simplistic predictions for
the complex flow field. Even modelling attempts that predict the flow field fairly well
across the domain are found to be unsatisfactory in the near field. For example, Garg
& Gaugler (1997) obtain good results except near the injection rows and the leading
edge regions using a Baldwin–Lomax model. A systematic study of film cooling by
Demuren, Rodi & Schonung (1986) showed that turbulent mixing in this flow is
poorly represented by the eddy viscosity model. Hoda & Acharya state that simple
expressions for ε in k–ε models are inadequate in the jet region (with high gradients
in all directions), and mention the need to optimize the ε budget, on the lines of the
DNS-based model by Rodi & Mansour (1993).

This section is an attempt at using the present DNS results to explain why
typical RANS computations experience difficulties in predicting this flow. The results
presented in this paper show that the flow field is far from being in turbulent
equilibrium. In particular, this behaviour is seen near the jet exit and in the near
field, as seen from figures 14 and 15 respectively. Further, the flow field is three-
dimensional and non-isotropic. The non-isotropic nature of the flow has prompted
the use of nonlinear models instead of linear models. Hoda & Acharya report that the
nonlinear models (Mayong–Kasagi and Speziale models) do not provide significantly
better predictions than the linear models. They suggest the reason to be that the
coefficients of the nonlinear models are obtained from simple wall-bounded flows.
Clearly, the turbulence and the anisotropic characteristics in jets in crossflow are
significantly more complex. It was shown in § 5 that while the flow upstream of the
jet exit showed characteristics of a turbulent pipe flow, the flow field downstream of
the jet exit shows few, if any, similarities.

Reynolds-stress transport models (RSTM) are expected to account for anisotropy in
the flow and hence predict the flow better than isotropic models. Acharya et al. (2001)
point that RSTM predictions are not substantially better than two-equation model
predictions. In most Reynolds-stress transport models, the transport of turbulence
kinetic energy by pressure (πii) is either ignored or modelled along with Tii (Pope
2000). In simple wall-bounded flows, πii is identically zero near the walls and fairly
small across the domain. In a mixing layer, the pressure transport is important
only near the edge of the layer (Rogers & Moser 1994), and is relatively small
over most of the layer. Application of RSTM, hence, appears reasonable for such
simple flows. However, in a jet in crossflow, πii is not negligible. There are regions of
flow (table 1) where πii is not only significant but is also higher in magnitude than
the rest of the budget terms. Profile of πii at y = rd (figure 15b) shows significant
magnitude across the jet width. It must be expected that any model that assumes
little or no impact of πii on k would result in an unsatisfactory prediction of this
flow.

A final point about RANS modelling of a transverse jet regards the computational
mesh and the domain. The profiles (of intensities k, and budget terms) involve steep
gradients at the jet edges. Computations with inadequate resolution in this region,
hence, would be inaccurate. Also, most RANS simulations do not include the pipe
in the computational domain. Muppidi & Mahesh (2005) and Yuan et al (1999)
mentioned the sensitivity of the flow field to the boundary conditions of the jet.
Inclusion of the pipe appears necessary for any transverse jet simulation (RANS,
LES or DNS). Figure 14 showed that the budgets at the jet exit have non-trivial
profiles. Therefore, it appears that a RANS computation that does not include the
pipe would have to prescribe, in addition to the mean velocities, complex boundary
conditions for k and εii across the jet exit.
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6. Summary
A direct numerical simulation of a round turbulent jet in crossflow, at conditions

of experiments by Su & Mungal (2004), is performed. Velocity and turbulent intensity
profiles from the simulation are compared to those from the experiments, and the
observed agreement is good. The flow is observed to be three-dimensional and involves
a wide range of scales of motion. The deformation of the jet, from a circular cross-
section to a kidney shape, begins with the flattening of the trailing edge close to the
jet exit. The counter-rotating vortex pair is displaced from the centre streamline along
the leeward side. A trajectory based on vorticity is therefore lower than a trajectory
based on the centre streamline. Streamlines indicate that crossflow fluid, near the
symmetry plane, travels around the jet and is entrained on the downstream side.
Also, jet fluid off the symmetry plane is deposited below the centre streamline on
the symmetry plane. Contours of instantaneous vorticity, profiles of mean velocity (v)
and spanwise intensity (w′w′) reflect this. An examination of turbulent kinetic energy
budget for this flow shows that the flow is not in turbulent equilibrium. The near
field is characterized by P/ε values greater than 1.0 along the jet edges and less than
1.0 along the jet centre. Jet and crossflow fluid interaction in the near field causes
peak production of turbulent kinetic energy on the leading edge of the jet. In the
far field, entrainment of crossflow fluid and the CVP cause peak production below
the centre streamline. Steep (velocity/intensity/budget) gradients, non-equilibrium
behaviour and non-trivial budget profiles at the jet exit make RANS computations
of turbulent transverse jets formidable.
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